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Lossless Source Coding Introduction

Lossless Source Coding - Overview

Reversible mapping of sequence of discrete source symbols into sequences of
codewords

Other names: noiseless coding, entropy coding

Original source sequence can be exactly reconstructed - not the case in lossy
coding

Bit rate reduction possible, if source data contain statistical properties that
are exploitable for data compression
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Lossless Source Coding Introduction

Lossless Source Coding - Terminology

Message s(L) ={s0, · · · , sL−1} drawn from stochastic process S={Sn}
Sequence b(K) ={b0, · · · , bK−1} of K bits (bk ∈ B={0, 1})
Process of lossless coding: Message s(L) is converted to b(K)

Assume:

Subsequence s(N) = {sn, · · · , sn+N−1} with 1 ≤ N ≤ L and
Bits b(`)(s(N)) = {b0, · · · , b`−1} assigned to it

Lossless source code

Encoder mapping:
b(`) = γ

(
s(N) ) (1)

Decoder mapping:

s(N) = γ−1( b(`) ) = γ−1( γ( s(N) ) ) (2)
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Lossless Source Coding Introduction

Classification of Lossless Source Codes

Lossless source code

Encoder mapping:
b(`) = γ

(
s(N) ) (3)

Decoder mapping:

s(N) = γ−1( b(`) ) = γ−1( γ( s(N) ) ) (4)

Fixed-to-fixed mapping: N and ` are both fixed (discussed as special case of
fixed-to-variable)

Fixed-to-variable mapping: N fixed and ` variable - Huffman algorithm for
scalars and vectors (discussed in lecture)

Variable-to-fixed mapping: N variable and ` fixed - Tunstall
codes [Tunstall, 1967, Savari and Gallager, 1997] (not discussed in lecture)

Variable-to-variable mapping: ` and N are both variable - arithmetic codes
and PIPE codes (discussed in lecture)
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Lossless Source Coding Variable-Length Coding for Scalars

Variable-Length Coding for Scalars

Assign a separate codeword to each scalar symbol sn of a message s(L)

Assume: message s(L) generated by stationary discrete random process
S = {Sn}
Random variables Sn = S with symbol alphabet A = {a0, · · · , aM−1} and
marginal pmf p(a) = P (S = a)

Lossless source code: Assign each ai to binary codeword
bi = {bi0, · · · , bi`(ai)−1}, length `(ai) ≥ 1

Average codeword length

¯̀= E {`(S)} =

M−1∑
i=0

p(ai) `(ai) (5)
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Lossless Source Coding Variable-Length Coding for Scalars

Optimization Problem

Average code word length is given as

¯̀=

K−1∑
k=0

p(ak) · `(ak) (6)

The goal of the entropy code design problem is to minimize ¯̀ while being
able to uniquely decode

ai p(ai) code A code B code C code D code E

a0 0.5 0 0 0 00 0
a1 0.25 10 01 01 01 10
a2 0.125 11 010 011 10 110
a3 0.125 11 011 111 110 111

¯̀ 1.5 1.75 1.75 2.125 1.75

October 25, 2012 6 / 65



o

Lossless Source Coding Variable-Length Coding for Scalars

Unique Decodability and Prefix Codes

For unique decodability, we need to generate a code γ : ai → bi such that

if ak 6= aj then bk 6= bj (7)

For sequences of symbols, above constraint needs to be extended to the
concatenation of multiple symbols

→ For a uniquely decodable code, a sequence of code words can only be
generated by one possible sequence of source symbols.

One class of codes that satisfies the constraint of unique decodability is called
prefix codes

A code is called a prefix code if no code word is a prefix of any other code
word

It is obvious that if condition (7) is satisfied and the code is a prefix code,
then a concatenation of symbols can be uniquely decodable
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Lossless Source Coding Variable-Length Coding for Scalars

Binary Code Trees

Prefix codes can be represented by trees
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A binary tree contains nodes with two branches (labelled as ’0’ and ’1’)
leading to other nodes starting from a root node

A node from which branches depart is called an interior node while a node
from which no branches depart is called a terminal node

A prefix code can be contracted by assigning letters of the alphabet A to
terminal nodes of a binary tree
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Lossless Source Coding Variable-Length Coding for Scalars

Parsing of Prefix Codes

Given the code word assignment to terminal nodes of the binary tree, the
parsing rule for this prefix code is given as follows

1 Set the current node ni equal to the root node

2 Read the next bit b from the bitstream

3 Follow the branch labeled with the value of b from the current node ni to the
descendant node nj

4 If nj is a terminal node, return the associated alphabet letter and proceed with
step 1 Otherwise, set the current node ni equal to nj and repeat the previous
two steps

Prefix codes are not only uniquely decodable, but also instantaneously
decodable
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Lossless Source Coding Variable-Length Coding for Scalars

Uniquely Decodability: Kraft Inequality

Assume fully balanced tree with depth `max (=longest code word)

Codewords assigned to nodes with codeword length `(ak) ≤ `max

Each choice with `(ak) ≤ `max eliminates 2`max−`(ak) possibilities of code
word assignment at level `max, example:
→ `max − `(ak) = 0, one option is covered
→ `max − `(ak) = 1, two options are covered

Number of terminal nodes is less than or equal to number of terminal nodes
in balanced tree with depth `max, which is 2`max

K−1∑
k=0

2`max−`(ak) ≤ 2`max (8)

A code γ may be uniquely decodable (McMillan) if

Kraft inequality: ζ(γ) =

K−1∑
k=0

2−`(ak) ≤ 1 (9)

Proof: [Cover and Thomas, 2006, p.116] or [Wiegand and Schwarz, 2011, p.25]
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Lossless Source Coding Variable-Length Coding for Scalars

Lower Bound for Average Codeword Length I

Average codeword length

¯̀=

M−1∑
i=0

p(ai) `(ai) = −
M−1∑
i=0

p(ai) log2

(
2−`(ai)

p(ai)

)
−

M−1∑
i=0

p(ai) log2 p(ai) (10)

With the definition q(ai) = 2−`(ai)/
(∑M−1

k=0 2−`(ak)
)

, we obtain

¯̀= − log2

(
M−1∑
i=0

2−`(ai)

)
−

M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
−

M−1∑
i=0

p(ai) log2 p(ai) (11)

We will show that

¯̀≥ −
M−1∑
i=0

p(ai) log2 p(ai) = H(S) (Entropy) (12)
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Lossless Source Coding Variable-Length Coding for Scalars

Historical Reference

C. E. Shannon published entropy as a measure for average information

Published 1 year later as: ”The Mathematical Theory of Communication”
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Lossless Source Coding Variable-Length Coding for Scalars

Lower Bound for Average Codeword Length II

Average codeword length

¯̀= − log2

(
M−1∑
i=0

2−`(ai)

)
−

M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
−

M−1∑
i=0

p(ai) log2 p(ai) (13)

Kraft inequality
∑M−1

i=0 2−`(ai) ≤ 1 applicable to first term

− log2

(
M−1∑
i=0

2−`(ai)

)
≥ 0 (14)

Inequality lnx ≤ x− 1 (with equality if and only if x = 1), applicable to
second term

−
M−1∑
i=0

p(ai) log2

(
q(ai)

p(ai)

)
≥ 1

ln 2

M−1∑
i=0

p(ai)

(
1− q(ai)

p(ai)

)

=
1

ln 2

(
M−1∑
i=0

p(ai)−
M−1∑
i=0

q(ai)

)
= 0 (15)
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Lossless Source Coding Variable-Length Coding for Scalars

Entropy

Average codeword length ¯̀ for uniquely decodable codes is bounded

¯̀≥ H(S) = E {− log2 p(S)} = −
M−1∑
i=0

p(ai) log2 p(ai) (16)

Redundancy of a code is given by the difference

% = ¯̀−H(S) ≥ 0 (17)

Redundancy is zero only, if the first and second term on the right side of (13)
are equal to 0

Upper bound of ¯̀: choose `(ai) = d− log2 p(ai)e, ∀ai ∈ A

¯̀=

M−1∑
i=0

p(ai) d− log2 p(ai)e <
M−1∑
i=0

p(ai) (1− log2 p(ai)) = H(S) + 1 (18)

Bounds on minimum average codeword length ¯̀
min

H(S) ≤ ¯̀
min < H(S) + 1 (19)
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Lossless Source Coding Variable-Length Coding for Scalars

Entropy of a Binary Source

A binary source has probabilities p(0) = p and p(1) = 1− p
The entropy of the binary source is given as

H(S) = −p log2 p− (1− p) log2(1− p) = Hb(p) (20)

with Hb(x) being the so-called binary entropy function
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Lossless Source Coding Variable-Length Coding for Scalars

The Huffman Algorithm

Now the question arises how to generate such a prefix code

The answer to this question was given by D. A. Huffman in
1952 [Huffman, 1952]

The so-called Huffman algorithm always finds a prefix-free code with
minimum redundancy

For a proof that Huffman codes are optimal instantaneous codes (with
minimum expected length), see [Cover and Thomas, 2006, p. 124ff]

The code tree is obtained as follows:

1 Given an ensemble representing a memoryless discrete source

2 Pick the two symbols with lowest probabilities and merge them into a new
auxiliary symbol and calculate its probability

3 If more than one symbol remains, repeat the previous step

4 Convert the code tree into a prefix code
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Lossless Source Coding Variable-Length Coding for Scalars

Example for the design of a Huffman code

P=0.03 ‘0’ 
‘1’

P=0.06 
‘0’
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‘0’ 
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Lossless Source Coding Variable-Length Coding for Scalars

Conditional Huffman Codes

Random process {Sn} with memory: design VLC for conditional pmf
Example:

Stationary discrete Markov process, A = {a0, a1, a2}
Conditional pmfs p(a|ak) = P (Sn =a |Sn−1 =ak) with k = 0, 1, 2

a a0 a1 a2 entropy

p(a|a0) 0.90 0.05 0.05 H(Sn|a0) = 0.5690

p(a|a1) 0.15 0.80 0.05 H(Sn|a1) = 0.8842

p(a|a2) 0.25 0.15 0.60 H(Sn|a2) = 1.3527

p(a) 0.64 0.24 0.1 H(S) = 1.2575

Design Huffman code for conditional pmfs

ai
Huffman codes for conditional pmfs Huffman code

for marginal pmfSn−1 = a0 Sn−1 = a1 Sn−1 = a2

a0 1 00 00 1
a1 00 1 01 00
a2 01 01 1 01

¯̀
0 = 1.1 ¯̀

1 = 1.2 ¯̀
2 = 1.4 ¯̀= 1.3556
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Lossless Source Coding Variable-Length Coding for Scalars

Average Codeword Length of Conditional Huffman Codes

Average codeword length ¯̀
k = ¯̀(Sn−1 =ak) is bounded by

H(Sn|ak) ≤ ¯̀
k < H(Sn|ak) + 1 (21)

with conditional entropy of Sn given event {Sn−1 =ak}

H(Sn|ak) = H(Sn|Sn−1 =ak) = −
M−1∑
i=0

p(ai|ak) log2 p(ai|ak) (22)

Resulting average codeword length

¯̀=

M−1∑
k=0

p(ak) ¯̀
k (23)

Conditional entropy H(Sn|Sn−1) of Sn given random variable Sn−1

H(Sn|Sn−1) = E {− log2 p(Sn|Sn−1)} =

M−1∑
k=0

p(ak)H(Sn|Sn−1 =ak) (24)
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Lossless Source Coding Variable-Length Coding for Scalars

Conditioning may reduce lower bound on transmission bit rate

Minimum average codeword length ¯̀
min

H(Sn|Sn−1) ≤ ¯̀
min < H(Sn|Sn−1) + 1 (25)

Conditioning May Lower Bit Rate

H(S)−H(Sn|Sn−1) = −
M−1∑
i=0

M−1∑
k=0

p(ai, ak)
(

log2 p(ai)− log2 p(ai|ak)
)

= −
M−1∑
i=0

M−1∑
k=0

p(ai, ak) log2

p(ai) p(ak)

p(ai, ak)

≥ 0 (26)

In the example:

No conditioning: H(S) = 1.2575, `min = 1.3556
Conditioning: H(Sn|Sn−1) = 0.7331, `min = 1.1578
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Lossless Source Coding Variable-Length Coding for Vectors

Huffman Coding of Fixed-Length Vectors

Stationary discrete random sources S = {Sn} with an M -ary alphabet
A = {a0, · · · , aM−1}
N symbols are coded jointly: design Huffman code joint pmf
p(a0, · · · , aN−1) = P (Sn =a0, · · · , Sn+N−1 =aN−1)

Average codeword length ¯̀
min per symbol is bounded

H(Sn, · · · , Sn+N−1)

N
≤ ¯̀

min <
H(Sn, · · · , Sn+N−1)

N
+

1

N
(27)

where the block entropy is defined by

H(Sn, · · · , Sn+N−1) = E {− log2 p(Sn, · · · , Sn+N−1)} (28)

The following limit is called entropy rate

H̄(S) = lim
N→∞

H(S0, · · · , SN−1)

N
(29)
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Lossless Source Coding Variable-Length Coding for Vectors

Entropy Rate

Entropy rate

H̄(S) = lim
N→∞

H(S0, · · · , SN−1)

N
(30)

The limit in (30) always exists for stationary sources [Gallager, 1968]

Entropy rate H̄(S): greatest lower bound for the average codeword length ¯̀

per symbol
¯̀≥ H̄(S) (31)

Entropy rate for iid processes

H̄(S) = lim
N→∞

E {− log2 p(S0, S1, · · · , SN−1)}
N

= lim
N→∞

∑N−1
n=0 E {− log2 p(Sn)}

N
= H(S) (32)
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Lossless Source Coding Variable-Length Coding for Vectors

Entropy Rate for Markov Processes

Entropy rate for stationary Markov processes

H̄(S) = lim
N→∞

E {− log2 p(S0, S1, · · · , SN−1)}
N

= lim
N→∞

E {− log2 p(S0)}+
∑N−1

n=1 E {− log2 p(Sn|Sn−1)}
N

= H(Sn|Sn+1) (33)

Example: joint Huffman coding of 2 events and ¯̀ vs. table size NC

aiak p(ai, ak) codewords

a0a0 0.58 1
a0a1 0.032 00001
a0a2 0.032 00010
a1a0 0.036 0010
a1a1 0.195 01
a1a2 0.012 000000
a2a0 0.027 00011
a2a1 0.017 000001
a2a2 0.06 0011

N ¯̀ NC
1 1.3556 3
2 1.0094 9
3 0.9150 27
4 0.8690 81
5 0.8462 243
6 0.8299 729
7 0.8153 2187
8 0.8027 6561
9 0.7940 19683
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Lossless Source Coding Variable-Length Coding for Vectors

Huffman Codes for Variable-Length Vectors

Assign codewords to variable-length vectors: V2V codes

Associate each leaf node Lk of the symbol tree with a codeword

Use pmf of leaf nodes p(Lk) for Huffman design

Average number of bits per alphabet letter

¯̀=

∑NL−1
k=0 p(Lk) `k∑NL−1
k=0 p(Lk)Nk

(34)

where Nk denotes number of alphabet letters associated with Lk
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Lossless Source Coding Variable-Length Coding for Vectors

V2V Code Performance

Example Markov process: H(Sn|Sn−1) = 0.7331

Faster reduction of ¯̀ with increasing NC compared to fixed-length vector
Huffman coding

ak p(Lk) codewords

a0a0 0.5799 1
a0a1 0.0322 00001
a0a2 0.0322 00010
a1a0 0.0277 00011
a1a1a0 0.0222 000001
a1a1a1 0.1183 001
a1a1a2 0.0074 0000000
a1a2 0.0093 0000001
a2 0.1708 01

NC ¯̀

5 1.1784
7 1.0551
9 1.0049

11 0.9733
13 0.9412
15 0.9293
17 0.9074
19 0.8980
21 0.8891
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Lossless Source Coding Elias Coding and Arithmetic Coding

Elias Coding and Arithmetic Coding

Drawbacks of block Huffman codes: large table sizes

Another class of uniquely decodable codes are Elias codes and Arithmetic
codes

Mapping of a string of N symbols s = {s0, s1, ..., sN−1} onto a string of M
bits b = {b0, b1, ..., bM−1}

γ : s→ b (35)

Stream decoding or parsing maps the bit string onto the string of symbols

γ−1 : b→ s (36)

Complexity of code construction: linear per symbol
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Lossless Source Coding Elias Coding and Arithmetic Coding

Mapping of the String into a Number

Consider S = {S0, S1, . . . , SN−1}, each Si with alphabet of size Ki

A realization of S: s = {s0, s1, . . . , sN−1} can be represented by a unqiue
real number v ∈ [0, 1)

v = ζ(s) =

N−1∑
i=0

siBi with Bi =

i∏
j=0

K−1j (37)

Note that when all Kj = K, the basis simplifies to Bi = K−i−1

Examples

s = 310, 110, 210, 110 → v =
3

10
+

1

10 · 10
+

2

103
+

1

104
= 0.312110

s = 35, 12, 23, 12 → v =
3

5
+

1

5 · 2
+

2

5 · 2 · 3
+

1

5 · 2 · 3 · 2
= 0.766710

Assuming va = ζ(sa) and vb = ζ(sb)

sa > sb if va > vb (38)
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Lossless Source Coding Elias Coding and Arithmetic Coding

Mapping Symbol Sequences to Intervals

Joint pmf

p(s) = P (S=s) = P (S0 =s0, S1 =s1, · · · , SN−1 =sN−1) (39)

Using (38), pmf of s can be written

p(s) = P (S=s) = P (S≤s)− P (S<s) (40)

Mapping of s = {s0, s1, . . . , sN−1} to half-open interval IN ⊂ [0, 1)

IN (s) = [LN , LN +WN ) =
[
P (S<s), P (S≤s)

)
(41)

with

LN = P (S < s) (42)

WN = P (S = s) = p(s) (43)

October 25, 2012 28 / 65



o

Lossless Source Coding Elias Coding and Arithmetic Coding

Unique Identification: The Intervals are Disjoint

Proof by mapping of sx onto IxN = [P (S < sx), P (S ≤ sx)) with x = a or
x = b

Assuming sa < sb, it follows

Lb
N = P (S<sb)

= P ( {S≤sa} ∪ {sa< S≤ sb})
= P (S≤sa) + P (S>sa, S<sb)︸ ︷︷ ︸

≥0

≥ P (S≤ sa) = La
N +W a

N (44)

→ Intervals IaN and IbN do not overlap: any number in the interval IN (s)
uniquely identifies s
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Lossless Source Coding Elias Coding and Arithmetic Coding

How Many Bits To Identify an Interval?

Symbol sequence s in interval IN (s) is to be transmitted

How many bits b0, b1, . . . , bK−1 to uniquely identify IN (s)?

v =

m−1∑
i=0

bi2
i−1 = 0.b0b1 · · · bK−1 ∈ IN (s) (45)

Size of interval (= p(s)) governs number m of bits that are needed to
identify the interval

p(s)=1/2 → B={.0, .1}
p(s)=1/4 → B={.00, .01, .10, .11}
p(s)=1/8 → B={.000, .001, .010, .011, .100, .101, .110, .111}

Minimum number of bits is

K = K(s) = d− log2 p(s)e (46)

with the binary number v identifying the interval In being

v = dLN · 2Ke · 2−K (47)
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Lossless Source Coding Elias Coding and Arithmetic Coding

Analytical Derivation of Number of Bits and Bitstring

Binary number v identifying the interval In

v = dLN · 2Ke · 2−K (48)

With dxe ≥ x and dxe < x+ 1, we obtain

LN ≤ v < LN + 2−K (49)

Using the expression for the required number of bits

K ≥ − log2 p(s) → 2−K ≤ p(s) = WN (50)

yields
LN ≤ v < LN +WN (51)

Hence, the representative v = 0.b0b1 . . . bm−1 always lies inside the interval
IN (s)

→ Message s can be uniquely decoded from the transmitted bit string
b = {b0, b1, . . . , bK−1} of K(s) = d− log2 p(s)e bits
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Lossless Source Coding Elias Coding and Arithmetic Coding

Redundancy of Elias Coding

Average codeword length per symbol

¯̀=
1

N
E {K(S)} =

1

N
E
{⌈
− log2 p(S)

⌉}
(52)

Applying inequalities dxe ≥ x and dxe < x+ 1, we obtain

1

N
E {− log2 p(S)} ≤ ¯̀<

1

N
E {1− log2 p(S)} (53)

Average codeword length is bounded

1

N
H(S) ≤ ¯̀≤ 1

N
H(S) +

1

N
(54)
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Lossless Source Coding Elias Coding and Arithmetic Coding

Derivation of Iterative Algorithm for Elias Coding I

Iterative construction of codewords

Consider sub-sequences s(n) = {s0, s1, · · · , sn−1} with 1 ≤ n ≤ N
Interval width Wn+1 for the sub-sequence s(n+1) = {s(n), sn}

Wn+1 = P
(
S(n+1) =s(n+1)

)
= P

(
S(n) =s(n), Sn =sn

)
= P

(
S(n) =s(n)

)
· P
(
Sn =sn

∣∣ S(n) =s(n)
)

Iteration rule of interval width

Wn+1 = Wn · p(sn | s0, s1, . . . , sn−1 ) (55)

Since p(sn | s0, s1, . . . , sn−1 ) ≤ 1, it follows

Wn+1 ≤Wn (56)
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Lossless Source Coding Elias Coding and Arithmetic Coding

Derivation of Iterative Algorithm for Elias Coding II

Derivation for lower interval border Ln+1 for the
sub-sequence s(n+1) = {s(n), sn}

Ln+1 = P
(
S(n+1)<s(n+1)

)
= P

(
S(n)<s(n)

)
+ P

(
S(n) =s(n), Sn<sn

)
= P

(
S(n)<s(n)

)
+ P

(
S(n) =s(n)

)
· P
(
Sn<sn

∣∣S(n) =s(n)
)

Iteration rule of lower interval boundary

Ln+1 = Ln +Wn · c(sn | s0, s1, . . . , sn−1 ) (57)

with the cmf c(·) being defined as

c(sn | s0, s1, . . . , sn−1 ) =
∑

∀a∈An: a<sn

p(a | s0, s1, . . . , sn−1 ) (58)

Since Wn · c(sn | s0, s1, . . . , sn−1 ) ≥ 0, it follows

Ln+1 ≥ Ln (59)
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Elias Coding for Different Sources

Derivation above for general case of dependent and differently distributed
random variables

For i.i.d. sources, interval refinement can be simplified

Wn = Wn−1 · p(sn−1) (60)

Ln = Ln−1 +Wn−1 · c(sn−1) (61)

For 1-st order Markov sources: conditional pmf p(sn|sn−1) and conditional
cmf c(sn|sn−1)

Wn = Wn−1 · p(sn−1|sn−2) (62)

Ln = Ln−1 +Wn−1 · c(sn−1|sn−2) (63)

For non-stationary sources, the probability p(·) needs to be adapted
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Example: iid Source

Example for an iid source for which an optimum Huffman code exists

symbol ak pmf p(ak) Huffman code cmf c(ak)

a0=‘A’ 0.25 = 2−2 00 0.00 = 0
a1=‘B’ 0.25 = 2−2 01 0.25 = 2−2

a2=‘C’ 0.50 = 2−1 1 0.50 = 2−1

Suppose we intend to send the symbol string s =′ CABAC ′

Using the Huffman code, the bit string would be b = 10001001

An alternative to Huffman coding is interval subdivision in stream entropy
coding

p(s) = p(′C ′) · p(′A′) · p(′B′) · p(′A′) · p(′C ′) = 1
2
1
4
1
4
1
4
1
2 = 1

256

The size of the bit stream is − log2 p(s) = 8 bits
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Encoding Algorithm for Elias Codes

Encoding algorithm:

1 Given is a sequence {s0, · · · , sN−1} of N symbols

2 Initialization of the iterative process by W0 = 1, L0 = 0

3 For each n = 0, 1, · · · , N − 1, determine the interval In+1 by

Wn+1 = Wn · p(sn|s0, · · · , sn−1)

Ln+1 = Ln +Wn · c(sn|s0, · · · , sn−1)

4 Determine the codeword length by K = d− log2WNe
5 Transmit the codeword b(K) of K bits that represents

the fractional part of v = dLN 2Ke 2−K
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Example for Elias encoding

s0=‘C’ s1=‘A’ s2=‘B’

W1 = W0 · p(‘C’) W2 = W1 · p(‘A’) W3 = W2 · p(‘B’)
= 1 · 2−1 = 2−1 = 2−1 · 2−2 = 2−3 = 2−3 · 2−2 = 2−5

= (0.1)b = (0.001)b = (0.00001)b

L1 = L0 +W0 · c(‘C’) L2 = L1 +W1 · c(‘A’) L3 = L2 +W2 · c(‘B’)
= L0 + 1 · 2−1 = L1 + 2−1 · 0 = L2 + 2−3 · 2−2

= 2−1 = 2−1 = 2−1 + 2−5

= (0.1)b = (0.100)b = (0.10001)b

s3=‘A’ s4=‘C’ termination

W4 = W3 · p(‘A’) W5 = W4 · p(‘C’) K = d− log2W5e = 8
= 2−5 · 2−2 = 2−7 = 2−7 · 2−1 = 2−8

= (0.0000001)b = (0.00000001)b v =
⌈
L5 2K

⌉
2−K

L4 = L3 +W3 · c(‘A’) L5 = L4 +W4 · c(‘C’) = 2−1 + 2−5 + 2−8

= L3 + 2−5 · 0 = L4 + 2−7 · 2−1

= 2−1 + 2−5 = 2−1 + 2−5 + 2−8 b = ‘10001001′

= (0.1000100)b = (0.10001001)b
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Illustration of Iteration
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Decoding Algorithm for Elias codes

Decoding algorithm:

1 Given is the number N of symbols to be decoded and
a codeword b(K) = {b0, · · · , bK−1} of KN bits

2 Determine the interval representative v according to

v =

K−1∑
i=0

bi 2−i

3 Initialization of the iterative process by W0 = 1, L0 = 0
4 For each n = 0, 1, · · · , N − 1, do the following:

1 For each ai ∈ An, determine the interval In+1(ai) by

Wn+1(ai) = Wn · p(ai|s0, . . . , sn−1)

Ln+1(ai) = Ln +Wn · c(ai|s0, . . . , sn−1)

2 Select the letter ai ∈ An for which v ∈ In+1(ai)
and set sn = ai, Wn+1 = Wn+1(ai), Ln+1 = Ln+1(ai)
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Arithmetic Coding I

Problem with Elias codes: precision requirement for WN and LN

Arithmetic codes: variant of Elias codes with fixed-precision integer
arithmetic

Represent pmfs p(a) and cmfs c(a) by V -bit positive integers pV (a) and
cV (a)

p(a) = pV (a) · 2−V c(a) = cV (a) · 2−V =
∑
ai<a

pV (ai) · 2−V (64)

Elias code remains decodable if intervals are always nested

0 < Wn+1 ≤Wn · p(sn) (65)

→ Rounding down of Wn · p(sn) at each iteration to keep fixed-length integer
arithmetic (results in rate increase)
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Arithmetic Coding II

Use U -bit integer An and integer zn ≥ U

Wn = An · 2−zn (66)

Approximate W0 = 1 by A0 = 2U − 1 and z0 = U

Interval refinement for integer arithmetic

Wn+1 = Wn · p(sn) = An · 2−zn · pV (sn) · 2−V (67)

→ An+1 =
⌊
An · pV (sn) · 2−yn

⌋
(68)

→ zn+1 = zn + V − yn (69)

Restriction of An to
2U−1︸ ︷︷ ︸

max. precision

≤ An < 2U︸︷︷︸
Wn<1

(70)

results in
yn =

⌈
log2(An · pV (sn) + 1)

⌉
− U (71)
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Arithmetic Coding III

Representation of the product Wn · c(sn):
first zn−U bits are zero, following U+V bits represent An · cV (sn)

Wn · c(sn) = An · cV (sn) · 2−(zn+V )

= 0. 00000 · · · 0︸ ︷︷ ︸
zn−U bits

xxxxx · · ·x︸ ︷︷ ︸
U+V bits

00000 · · ·

Representation of lower interval boundary

Ln = 0. aaaaa · · · a︸ ︷︷ ︸
zn−cn−U
settled bits

0111111 · · · 1︸ ︷︷ ︸
cn

outstanding bits

xxxxx · · ·x︸ ︷︷ ︸
U+V

active bits

00000 · · ·︸ ︷︷ ︸
trailing bits

trailing bits: equal to 0, but maybe changed later

active bits: directly modified by the update Ln+1 = Ln +Wn · c(sn)

outstanding bits: may be modified by a carry from the active bits

settled bits: not modified in any following interval update
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Efficiency of Arithmetic Codes

Fixed-length integer precision achieved by rounding down reduces Wn in each
iteration

Excess rate

∆` =
⌈
− log2WN

⌉
−
⌈
− log2 p(s)

⌉
< 1 + log2

p(s)

WN
(72)

Upper bound for increase in codeword length per symbol

∆¯̀<
1

N
+ log2

(
1 + 21−U

)
− log2

(
1− 2−V

pmin

)
(73)

Example:

number of coded symbols N = 1000,
precision for representing probabilities V = 16,
precision for representing intervals U = 12,
minimum probablity pmin = 0.02

→ Increase in codeword length is less than 0.003 bit per symbol
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Binary Arithmetic Coding

Complexity reduction: most popular type of arithmetic coding

Binarization of S ∈ {a0, a1, . . . , aM−1} produces C ∈ {0, 1}
Example in table: unary truncated binarization

Sn number of bins B C0 C1 C2 · · · CM−2 CM−1

a0 1 1
a1 2 0 1
...

...
...

...
. . .

aM−2 M − 2 0 0 0 · · · 0 1
aM−1 M − 2 0 0 0 · · · 0 0

Entropy and efficiency of coding unchanged due to binarization

H(S) = H(C) (74)

= H(C0) +H(C1|C0) + . . .+H(CM−1|C0, C1, . . . , CM−2)
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Probability Interval Partitioning Entropy (PIPE) Coding

Alternative to arithmetic coding

Quantization into probability intervals combined with variable-length coding
of variable-length vectors
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Algorithm for PIPE Coding

1 Binarization: The sequence s = {s0, s1, · · · , sN−1} is converted into a
sequence c = {c0, c1, · · · , cB−1} bins with pmfs; each bin ci is characterized
by a probability P (Ci =0)

2 Decomposition: The bin sequence c is decomposed into U sub-sequences; a
sub-sequence uk contains the bins ci with P (Ci =0) ∈ Ik in the same order
as in the bin sequence c

3 Binary Coding: Each sub-sequence of bins uk is coded using a distinct V2V
code resulting in U codeword sequences bk

4 Multiplexing: The data packet is produced by multiplexing the U codeword
sequences bk
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Binarization: Bijective Mapping

1 Mapping of source symbols sn to bin sequence

dn = (dn0 , . . .) = γnd (sn) (75)

and dn being concatenated to d = (d0, d1, . . . , dB−1)

2 Less probable bin value

viLPB =

{
0, if P (di = 0) ≤ 0.5
1, if P (di = 0) > 0.5

(76)

and probability

piLPB =

{
P (di = 0), if P (di = 0) ≤ 0.5
1− P (di = 0), if P (di = 0) > 0.5

(77)

3 Resulting expression for coding bins

bi = di ⊕ viLPB (78)

provides the mapping (s0, s1, .., sN−1)→ (b0, b1, .., bB−1)
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Probability Interval Partitioning and Bin Assignment

The binary values bi ∈ (b0, b1, .., bB−1) have associated probabilities piLPB

with
piLPB ∈ (0, 0.5] (79)

Partition the interval into K partitions such that

K−1⋃
k=0

Ik = (0, 0.5] and Ik ∩ Ij = ∅ for k 6= j (80)

Decompose (b0, b1, .., bB−1) into K separate sequences

uk = (uk0 , u
k
1 , . . .) = (bi : bi ∈ b, piLPB ∈ Ik) (81)
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What is the Loss of Probability Interval Partitioning?

Represent all bins of interval Ik using one fixed probability pIk ∈ Ik
Assuming optimal entropy coder for probability pIk ,
rate when coding a bin with probability p is given as

R(p, pIk) = −p log2(pIk)− (1− p) log2(1− pIk)

= Hb(pIk) + (p− pIk) H ′b(pIk) (82)

where Hb(p) represents the binary entropy function

Hb(p) = −p log2 p− (1− p) log2(1− p) (83)

and H ′b(p) its first derivative

H ′b(p) = log2

(
1− p
p

)
(84)
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Example with 4 Intervals

K = 4 intervals and p being uniformly distributed (0, 0.5], redundancy is given

% =
E {R(p, pIk)}
E {H(p)}

− 1 = 1% (85)
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Entropy Coding for Each Probability Interval

Assuming fixed probabilities p = pIk for each probability interval Ik
Entropy coding of the corresponding sub-sequences of coding bins uk:
simplified binary arithmetic coding or variable length coding

For variable length coding, create a variable number of bins to variable
number of bits (V2V) code

Example for p = 1− q = 0.37, excess rate % = 0.2%

q 

p 

p 2 

p q  

q 2  
q 3  

q p  
q 2 p 

0.25 

0.1469 
0.2331 
0.2331 
0.1369 

11 

001 
01 
10 
000 

pL Code 

Leaf probability pL(j) = pxj (1− p)yj
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Excess Rate for Optimal V2V Codes
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Combined Design

Assuming uniform distribution of encoded probabilities

Excess rate %̄opt = 0.12%, %̄V2V = 0.24%
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Unique Decodability and Multiplexing

PIPE coding: partition sequence of coding bins into K sub-sequences uk

{u0, . . . ,uK−1} = γm(b) (86)

To each sub-sequence uk, a sequence of codewords ck(uk) is assigned

A sequence of coding bins b is uniquely decodable given K sequences of
codewords ck(uk), if each sub-sequence is uniquely decodable and the
multiplexing rule γm is known to the decoder

The multiplexing rule γm could come in many flavors:

Concatenate the sub-sequences
Interleave codewords event driven
Create fixed multiplexing partitions
...
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Comparison of Lossless Coding Techniques

Instantaneous entropy rate

H̄inst(S, L) =
1

L
H(S0, S1, . . . , SL−1) (87)

Example: Markov source

October 25, 2012 56 / 65



o

Lossless Source Coding Probability Interval Partitioning Entropy (PIPE) Coding

Conditional and Adaptive Codes

The question arises how sources with memory and/or with varying statistics
can be efficiently entropy-coded

One approach would be a switch Huffman code trained on the conditional
probabilities

The resulting number of Huffman code tables is often too large in practise

Hence, conditional entropy coding is typically done using arithmetic codes

In adaptive arithmetic coding, probabilities p(ak) are estimated/adapted
simultaneously at encoder and decoder

Statistical dependencies can be exploited using so-called context modeling
techniques: conditional probabilities p(ak|zk) with zk being a context/state
that is simultaneously computed at encoder and decoder
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Forward and Backward Adaptation

The two basic approaches for adaptation are

Forward adaptation:

Gather statistics for a large enough block of source symbols
Transmit adaptation signal to decoder as side information
Disadvantage: increased bit-rate due to side information

Backward adaptation:

Gather statistics simultaneously at coder and decoder
Drawback: error resilience

With today’s packet-switched transmission systems, an efficient combination of
the two adaptation approaches can be achieved:

1 Gather statistics for the entire packet and provide initialization of entropy
code at the beginning of the packet

2 Conduct backwards adaptation for each symbol inside the packet in order to
minimize the size of the packet
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Forward and Backward Adaptation

Encoding
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Coding of Geometric Sources

Geometric/exponential pdfs are very typical in source coding

Consider a Geometric source with probability mass function

p(s) = 2−(s+1), s = 0, 1, 2, 3, . . .

Information content in bits

l(s) = − log2 p(s) = s+ 1

Optimal code with redundancy % = 0 is ’unary’ code

c0 = 0, c1 = 10, c2 = 110, c3 = 1110

Consider geometric source with decay β

p(s) = (1− β)βs, s ≥ 0

Average codeword length when using Unary code

lav =
∞∑
s=0

p(s)(s+ 1) =
∞∑
s=0

(1− β)βs · (s+ 1) =
1

1− β
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Efficiency of Unary Coding

Entropy of geometric source with decay β:

H = − log2(1− β)− β

(1− β)
log2 β
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Coding of Geometric Sources with 0 < β < 2−1

For 0 < β < 2−1, the unary code is still optimum single-letter VLC code, but
not redundancy-free

Information content in bits

l(s) = − log2(1− β)− s · log2 β

Optimality of symbol code is proved by the fact that the Huffman algorithm
always yields the unary code (except for least probable code word)

Term − log2 β > 1 for β < 2−1, i.e., l(s+ 1) > l(s) + 1 and the unary code
is not redundancy free

Nearly optimal coding possible by using binary arithmetic codes

Binarize the geometric source using unary code
Encode each ’bin’ using a binary arithmetic coder
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Binary Arithmetic Coding of Unary Codes

Geometric source p(s) = βs(1− β) with 0 < β < 2−1

Binarize s using unary code

Use binary arithmetic code for each ’bin’

Each bin has probabilities: pb(0) = 1− β, pb(1) = β

Bin number
s 0 1 2 3 4 5 6 p(s)
0 0 1− β
1 1 0 β · (1− β)
2 1 1 0 β · β · (1− β)
3 1 1 1 0 β · β · β · (1− β)
4 1 1 1 1 0 β · β · β · β · (1− β)
5 1 1 1 1 1 0 β · β · β · β · β · (1− β)
6 1 1 1 1 1 1 0 β · β · β · β · β · β · (1− β)
... ... ...
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Summary

Entropy describes the average information of a source

Entropy is the lower bound for the average number of bits/symbol

Huffman coding

is an efficient and simple entropy coding method
needs code table
can be inefficient for certain probabilities
difficult to use for exploiting statistical dependencies and time-varying
probabilities

Arithmetic coding

is a universal method for encoding strings of symbols
does not need a code table, but a table for storing probabilities
typically requires serial computation of interval and probability estimation
update (in case probabilities are adapted)
approaches entropy for long strings
is well suited for exploiting statistical dependencies and coding time-varying
probabilities
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Summary (cont’d)

PIPE coding

is an alternative to Arithmetic and Huffman coding
can exploit statistical dependencies and coding time-varying probabilities
allows for very low redundancy via increasing number of intervals or increasing
size of V2V codes
allows for larger throughput than Arithmetic coding by use of V2V codes
multiplexing to accumulate V2V codes - requires buffering process

Coding of Geometric Sources

Geometric pdf is very typical input for entropy coding
Unary code is optimal for representing Geometric pdf with β = 2−1

Fast decaying geometric pdf can be coded using unary binarization followed by
binary arithmetic coding
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